

## **Analytical Series Electronic Solenoid Valves**



Medium: Clean, dry air or non-corrosive gas (40 micron

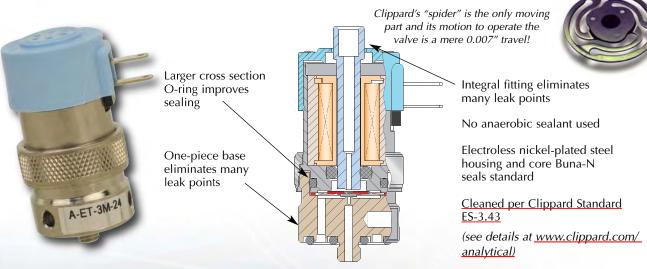
filter)

**Power Consumption:** 0.67 watt

**Temperature Range:** 32 to 180°F (0 to 82°C)

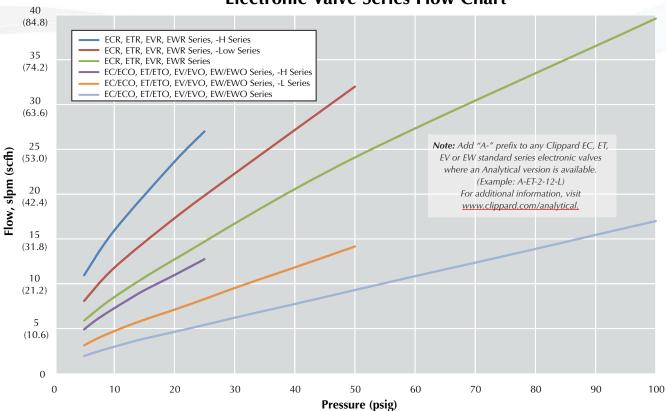
Response: 5 to 10 milliseconds (nominal)

Operating Range: 90 to 150% of rated voltage

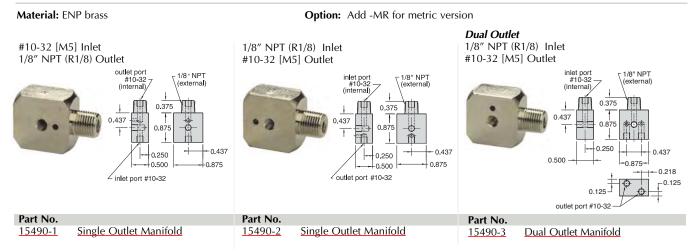

**Voltage:** 12 or 24 VDC **Mounting:** Manifold only

Clippard Minimatic electronic valves are precision-built 2-way or 3-way control valves, utilizing a unique, patented valving principle. There are no sliding parts. Complete poppet travel is a mere 0.007". As a result, low power consumption, quiet operation and exceptionally long life are major benefits of this design.

The Analytical Series Valve (A-) combines the proven features of Clippard's "Mouse" series with the specific needs of the analytical industry, and for applications where cleanliness is especially important. Special materials, manufacturing and assembly processes make this valve perfectly-suited for applications where internal cleanliness, bubble-tight operation, and long life are imperative.


- Industry standard for leak-free operation
- 1,000,000,000 cycles
- · Design flexibility and fast response
- Low heat rise/low power
- Enhanced cleaning procedures

For additional valve specifications and order information, visit <u>www.clippard.com</u> or <u>request a full-line catalog</u>.




One-piece base and one-piece core combine with specific design enhancements to create the "industry standard for leak-free operation" in analytical and other scientific applications. Coil housing o-ring cross sections are also increased from Clippard's standard valve to add compression to these static seals. Elastomeric seals undergo special procedure for outgassing. These features and the removal of all anaerobic sealants and grease in the assembly process result in a valve uniquely suited for gas analytical systems and any application where leakage is a vital concern.

## **Electronic Valve Series Flow Chart**



## **Manifolds**



## **Distributed by:**

